
Perspectives

Rationale for Determining the Functional Potency of Mesenchymal
Stem Cells in Preventing Regulated Cell Death for Therapeutic Use

ABDERRAHIM NAJI,a,b NARUFUMI SUGANUMA,a,b NICOLAS ESPAGNOLLE,c KEN-ICHI YAGYU,d NOBUYASU BABA,a LUC SENSEBÉ,c
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SUMMARY

Mesenchymal stem (stromal) cells (MSCs) are being investigated for treating degenerative and inflammatory disorders because of
their reparative and immunomodulatory properties. Intricatemechanisms relate cell death processes with immune responses, which
have implications for degenerative and inflammatory conditions. We review the therapeutic value of MSCs in terms of preventing
regulated cell death (RCD). When cells identify an insult, specific intracellular pathways are elicited for execution of RCD processes,
such as apoptosis, necroptosis, and pyroptosis. To some extent, exacerbated RCD can provoke an intense inflammatory response and
vice versa. Emerging studies are focusing on the molecular mechanisms deployed by MSCs to ameliorate the survival, bioenergetics,
and functions of unfit immuneor nonimmune cells. Given these aspects, and in light ofMSC actions inmodulating cell death processes,
we suggest the use of novel functional in vitro assays to ensure the potency of MSCs for preventing RCD. Such analyses should be
associated with existing functional assays measuring the anti-inflammatory capabilities of MSCs in vitro. MSCs selected on the basis
of two in vitro functional criteria (i.e., prevention of inflammation and RCD) could possess optimal therapeutic efficacy in vivo. In
addition, we underline the implications of these perspectives in clinical studies of MSC therapy, with particular focus on acute respi-
ratory distress syndrome. STEM CELLS TRANSLATIONAL MEDICINE 2016;5:1–7

SIGNIFICANCE

Most studies ofmesenchymal stem (stromal) cells (MSCs) focus on their anti-inflammatory, trophic anddifferentiation abilities, but
their ability to prevent regulated cell death (RCD) remains undefined. However, this last function could explain both the regener-
ative and anti-inflammatory therapeutic effect of MSCs observed in preclinical and clinical studies. The present report reviews the
role of MSCs in preventing RCD, with implications for enhancing their therapeutic efficacy in the clinic. Development of in vitro
assays to assess MSC functional potency in preventing RCD is suggested and criteria for selecting MSCs for therapeutic use are
proposed. Furthermore, in vivo biomarkers of RCD that can be used for prompt evaluation of the therapeutic effects of MSCs
are suggested.

INTRODUCTION

Mesenchymal stem (stromal) cells (MSCs), in humans, are princi-
pally derived from bone marrow and adipose tissues in adults

and in neonatal tissues from umbilical cord blood and placenta

[1–3]. Regardless of their origin, in vitro-expanded MSCs possess a

common phenotype and share mutual biological properties [4–8].

However, we lack specific biomarkers to distinguishMSCs phenotyp-

ically and exclusively in vivo or in MSCs expanded in vitro. This situa-

tion is further complicated by the fact that in vitro-expanded MSC

cultures are not derived from a single clone but rather several

fibroblastic colony forming units [9, 10] with probable functional

heterogeneities [8, 11]. To address this complexity, researchers

use a combination of cell surface markers [7, 8] that are often
associated with functional assessment of MSCs in differentiating

into osteoblasts, chondroblasts, and adipocytes to confirm the

MSC identity [8] (Fig. 1).
Today, MSCs are under intense clinical investigation for re-

generative medicine because of their differentiation and trophic

abilities [12–14] and for treatment of inflammatory diseases

because of their immunosuppressive properties [15, 16]. MSCs

delivered in vivo can home to inflammatory sites [17, 18] and
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produce anti-inflammatory and growth factors; therapeutic ef-

fects have been demonstrated in preclinical and clinical studies

of various disorders [19, 20]. Hence, the clinical use of MSCs for

treating severe degenerative and inflammatory diseases lacking

appropriate treatments is expected to increase exponentially [8].
Substantial efforts have been undertaken by the translational

community to standardize methods for producing, selecting, and
usingMSCs in the clinic [5, 6]. Notably, general guidance has been
proposed for developing in vitro assays for selecting MSCs with
potent therapeutic ability based on functional criteria [20, 21].
These assays require identifying MSC functions to predict clinical
efficacy [6]. Some clinical observations have confirmed the rele-
vance of in vitro assays to measure anti-inflammatory MSC po-
tency, which was found consistent with in vivo effects [21].
Challenges remain in improving and using pertinent functional

in vitro assays to identify MSCs with bona fide optimal efficiency
in vivo [5, 6]. Thus, the ability of MSCs to prevent cell death
processes could be tested in vitro to identify functional MSCs
for clinical use.

REGULATED CELL DEATH AS A THERAPEUTIC TARGET

Emerging evidences indicate a critical role for regulated cell death
(RCD) in the pathogenesis of various diseases [22]. By definition,
RCD is opposite to accidental cell death (ACD), whose effects are
often identified as necrosis [23] (Tables 1, 2). ACD results from sud-
den trauma and occurs in an uncontrolled manner [23]. Nonethe-
less, ACD occurring in cells and through the release of intracellular
content might trigger RCD in bystander cells [23]. RCD includes
several processes [24, 25], among which the most distinct are

Figure 1. Schematic diagram summarizing the concept of MSC selection based on identity and double functional potency for preventing in-
flammation andRCDbefore use as therapy. This schematic shows four essential stages, from isolation to release ofMSC product for use in clinic.
Stage 1: optimalmethods forMSC isolation, expansion, and production by GMPwith severe control in cell sterility and genetic stability. Stage 2:
selection of MSCs based on two criteria, phenotype and potential for differentiation, for assessing MSC “identity” in vitro. Stage 3: selection of
MSCs based on two criteria, inhibition of inflammation and inhibition of RCD, for assessingMSC “potency” in vitro. Stage 4: for approval ofMSCs
for therapy andmonitoring of in vivo actions ofMSCs. Abbreviations: adipo., adipocytes; CFU-f, colony-forming unit fibroblast; chondro., chon-
droblasts; EC, epithelial cell; FACS, fluorescence-activated cell sorting; GMP, Good Manufacturing Practices; MF, macrophage; MSC, mesen-
chymal stem (stromal) cell; osteo., osteoblasts; PCR, polymerase chain reaction; RCD, regulated cell death.
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apoptosis, necroptosis, and pyroptosis [23] (Tables 1, 2). Thus, RCD
is caused after cells sense danger or inflammatory mediators, in
sterileornonsterileconditions,whichhas implications for thepath-
ogenesis of degenerative and inflammatory disorders [22, 24–28].
The RCDprocesses differ by theirmolecular triggers, molecular

pathways engaged and mode of execution [23]. Apoptosis has
been considered a programmed cell death (PCD) both
during physiological and pathological processes. The term
“PCD” is now preferred to indicate cell death from phys-
iological processes, such as during development and main-
tenance of tissue homeostasis [29]. However, when cell
death occurs during pathological conditions, RCD rather than
PCD appears more appropriate [23, 25, 29]. Apoptosis is exe-
cuted via a mechanism involving caspase-3/6/7 and results
in cell death without plasma membrane rupture [22]. With
disrupted plasma membrane, apoptosis might culminate
in secondary necrosis [24, 30, 31]. Thus, apoptosis can be
considered nonimmunogenic but not occurring in particu-
lar pathological conditions [26, 30, 31], whereas RCD such
as necroptosis and pyroptosis are intrinsically immunogenic
[24].
Necroptosis is mediated by a mechanism that depends on

receptor-interacting protein kinase 1/3 and mixed lineage
kinase-like protein, whereas pyroptosis is executed in cells
by a mechanism involving caspase-1/4/5 and gasdermin D
[24, 26, 27]. Both necroptosis and pyroptosis conclude with
a rapid rupture of the plasma membrane, release of intracel-
lular content and often with harmful consequences [24, 27].
Hence, RCD can be detrimental because it can sustain

inflammation, tissue damage, and loss of function of the af-
fected organ [22, 28]. Furthermore, exacerbated RCD can
cause inflammation, and intense inflammation can elicit
RCD, with, in all cases, pathological consequences [22]. There-
fore, targeting RCD in addition to inflammation is needed to
improve the efficacy of existing anti-inflammatory therapeu-
tics [22, 28, 32].

BRIEF INSIGHTS INTO THE PROSPECTIVE MODE OF ACTION OF
MSCS IN PREVENTING RCD

MSCs are known to improve cell survival and prevent apoptosis,
necroptosis and pyroptosis (Tables 1, 2) occurring in various
parenchymal or nonparenchymal cells and immune cells under
unfavorable conditions [19, 33–35]. Mechanistically, MSCs are
thought to promote cell survival via the secretion and paracrine
actions of various cytokines and growth factors [20, 36]. Theymay
also promote survival, bioenergetics, and functions of distressed
cells, by mitochondria transfer through tunneling nanotubes
(TNT), or microRNA/protein transfer through extracellular vesi-
cles [37–40]. Themechanismmay involve gap-junction communi-
cation via connexin 43 between MSCs and unfit cells [38, 41].
Consistently, mitochondrial transfer from MSCs to immune cells
occurs in vivo and results in enhanced cell survival, phagocytic ac-
tivity, and antimicrobial effects in preclinicalmodels of acute lung
injury and acute respiratory distress syndrome (ARDS) [38, 39].
The mechanisms MSCs use to achieve improved survival, bioen-
ergetics, and functions of unfit cells are diverse and sophisticated
andmay reflect their vital importance, such as preventing RCD.Of

Table 1. Features of RCD and ACD with the role of MSCs in preventing RCD in terminally differentiated third-party cells

Features RCD ACD

Cell death pathway Apoptosis Necroptosis Pyroptosis Necrosis

Plasma membrane Intacta Disrupted Disrupted Disrupted

Mechanism Caspase-3/6/7 RIPK1/3 Caspase-1/4/5 Trauma

Inflammation Nob Yes Yes Yes

Prevention by MSCs? Yes Yes Yes Noc

Data are based mostly on the studies reported in [22, 23, 33, 34, 43–46]. Additional citations can be found throughout the article.
aThe plasma membrane of cells undergoing apoptosis remains intact but not with efferocytosis failure, during which cells might progress to secondary
necrosis.
bApoptosis in cells is considered noninflammatory but not with secondary necrosis.
cMSCs do not prevent ACD; however, ACD might trigger RCD in bystander cells as a secondary event, when RCD can be prevented by MSCs.
Abbreviations: ACD, accidental cell death; MSCs, mesenchymal stem (stromal) cells; RCD, regulated cell death.

Table 2. MSC prevention of RCD processes occurring in terminally differentiated parenchymal, stromal, and immune cells

RCD pathway Cell type benefiting from MSC effects Mechanism of action Study

Apoptosis Cardiomyoblasts, PCs Cell-to-cell interaction Cselenyak et al. [43]

Apoptosis Neurons, PCs Caspase-3neutralization, PSAP Kong et al. [34], Li et al. [44]

Apoptosis Lung fibroblasts, SCs PI3K/Akt pathway Kim et al. [45]

Apoptosis Alveolar epithelial cells, PCs, IICs KGF/HGF Uzunhan et al. [46]

Necroptosis Neurons, PCs RIP1/3 neutralization Kong et al. [34]

Pyroptosis Alveolar macrophages, PCs, IICs Cell-to-cell interaction Naji et al. [33]

Pyroptosis Monocyte-derivedmacrophages, IICs Cell-to-cell interaction, IL-10 Naji et al. [33]

This table is not exhaustive; rather, it gives representative examples.
MSCs and target cells described in this table can originate from human or rodent species.
Abbreviations: ACD, accidental cell death; Akt, name related to protein kinase B; HGF, hepatocyte growth factor; IICs, innate immune cells; IL-10,
interleukin 10; KGF, keratinocyte growth factor; MSC, mesenchymal stem (stromal) cell; PC, parenchymal cells; PI3K, phosphatidylinositol-4,5-bisphosphate
3-kinase; PSAP, prosaposin; RCD, regulated cell death; RIP1, receptor-interacting protein 1; RIP3, receptor-interacting protein 3; SCs, stromal cells.
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note, TNT-mediated transfer of mitochondria from healthy to ap-
optotic neuroblastic PC12 cells can reverse apoptosis, with impli-
cations for the survival mechanisms of damaged cells [42]. By
comparison, this proposes that transfer of mitochondria from
MSCs to distressed cells through a TNT-dependent mechanism
might prevent the execution of RCD.
Therefore, innovative therapeutic interventions should simul-

taneously target RCD and inflammation to optimize cure [22].
The abundant success of MSC therapy in certain degenerative and
inflammatory disorders, observed in preclinical and clinical studies,
might be because of the intrinsic properties of MSCs to simulta-
neously modulate RCD and inflammation. Further dissecting the
mechanisms MSCs use to prevent RCD is fundamental, but the use
of such functional attributes as selection criteria for MSCs intended
for therapy is of immediate practical importance for the clinic.

MSC FUNCTION TO MODULATE RCD AS CRITERIA FOR
THERAPEUTIC USE

The antiapoptotic properties of MSCs toward immune and non-
immune cells have been demonstrated in some contexts [35,
36, 43–46].Emergingstudiessuggest thatMSCscan inhibitRCDsuch
as necroptosis [34], and we recently showed that MSCs could pre-
vent pyroptosis in macrophages [33].We focused on the pathogen-
esis of severe occupational lung diseases such as interstitial lung
disease and pulmonary alveolar proteinosis, which could involve
pyroptosis of lung macrophages caused by inhalation of inorganic
particles [33]. This pyroptosis is characterized by the production
of inflammatory cytokines and cell death by cytolysis, events
depending on the inflammasome NACHT, LRR, and PYD domain-
containing protein 3–apoptosis-associated speck-like protein con-
taining a CARD–Caspase-1 (NLRP3-ASC-Caspase-1) [33]. Blockade
of inflammatory pathways with pharmacological inhibitors such as
dexamethasone and genetic knockdownof essential inflammasome
protein components (i.e., NLRP3 or ASC) reduced the production of
inflammatorycytokinesbutwere ineffective inpreventingcelldeath.
However, coculture of MSCs with macrophages undergoing pyrop-
tosis resulted in both inflammation and cell death inhibition [33].
Therefore, we suggest that to optimize the efficiency of MSC

therapy, the ability of MSCs to prevent RCD should be evaluated
by in vitro functional assays before the cells are used in clinical
interventions (Fig. 1). The assays can be established rapidly and
suitably in conventional biology laboratories (Tables 3–5). These
functional assays should be implemented by coculturing MSCs
with cells of innate immunity, includingmacrophages and epithe-
lial cells, because RCD in innate immune cells are likely responsi-
ble for triggering an exacerbated inflammatory response, such as
in sepsis [22]. Thus, macrophages and epithelial cells, challenged
with specific cell death inducers, can be cocultured with MSCs
at varying cell ratios to estimate the ability of MSCs to modulate
RCD. These in vitro functional assays canbeused tomeasuremarkers
of cell death in cells or supernatant (Table 4) within hours [33]. As
well, they can allow for quantifying pro- and anti-inflammatory cyto-
kines (i.e., tumor necrosis factora and interleukin 10) released in the
supernatant in assessing MSC function to modulate RCD and inflam-
mation [33]. To further compare theMSCpotencyofvariousproducts
to modulate RCD, MSCs should be tested in dilution series with lim-
iting dilution analysis (LDA) [47] tomeasure the amplitudeof potency
of a givenMSC culture in preventing RCD. Hence, LDA established for
eachMSCproductmighthelpestimatetheMSCfrequencywithactual
function to prevent RCD to predict the MSC therapeutic benefit in

vivo. However, these functional assays must be accompanied by in
vitro evaluation of the MSC anti-inflammatory potency for cells of
adaptive immunity, such as T cells [48]. The selection of MSCs based
on in vitro functional criteria formodulating both RCD and inflamma-
tion of innate and adaptive immune cells might lead to an optimal
therapeutic effect in vivo (Tables 3–5).
Because the therapeutic effects of MSCs often result from mul-

tiple pathways, with or without redundant actions [8], the in vitro
potency ofMSCsmust be assessed in terms of two functional crite-
ria to ensure the optimal in vivo effect. Assessing theMSC potency
to prevent both RCD and inflammation, with the assumption that
both functions can be determined by independent mechanisms,
is critical to ensure the optimal therapeutic effect ofMSCs, and par-
ticularly for diseases in which cell death is closely related to inflam-
matory processes, such as ARDS or other devastating disorders [22,
32]. Studies have suggested that the systemic administration of
MSCs in preclinical ARDS models improves respiratory conditions
[39, 49]. Recently, a phase 1 clinical trial demonstrated the safety
and tolerability of intravascular infusion of allogeneic MSCs in nine
patients with ARDS [16, 37]. A phase 2 clinical trial in progress [20,
50] is assessing the clinical efficacy ofMSC infusion in patients with
moderate to severe ARDS [50]. Therefore, selectingMSCs intended
for use in treatment of ARDS has clinical relevance in terms of the in
vitro potency to modulate both RCD and inflammation.

CLINICAL RELEVANCE FOR IDENTIFYING MSCS WITH OPTIMAL
THERAPEUTIC ACTIONS

Indeed, RCD represents a therapeutic target for attenuating both
tissue damage and inflammation in various disorders [22] such as
ARDS [49]. ARDS represents severe lung injury, a serious and life-
threatening condition that often results from intense trauma,
pneumonia infection or sepsis [49]. The pathogenesis of ARDS
is characterized by diffuse alveolar damage complicated by in-
tense inflammation [51]. Diffuse alveolar damage is associated
with rapid and massive myeloid and epithelial cell death, which
is detected by molecular markers such as activated caspases
and cleavage of cytokeratin 18 (K18) [21, 49]. Hence, in advanced-
phase clinical trials, the MSC potency in preventing RCD in myeloid
and epithelial cells could be evaluated as supplementary selection
criteria for MSCs intended for patients with ARDS. This suggestion
ismotivated by patientswithARDS being particularly affected by in-
tense cell death and inflammationwithin the lungparenchyma [51].
Furthermore, molecular markers of RCD should be tested in vivo
(Table 5) tomeasure thebeneficial effects ofMSCadoptive transfer,
asan integralpartofmonitoringMSCtherapy,especially forpatients
with ARDS.
A study by Leblanc and colleagues [21] showed improve-

ment with MSC infusion in severe cases of ARDS, with resolution
of respiratory, hemodynamic, and organ failure [21]. These im-
provements were associated with decreased levels of markers
of inflammation. Moreover, the authors evaluated in vitro the
immunomodulation potency of theMSCs used. The in vitro po-
tency assays included functional assays for determining the
anti-inflammatory properties of MSCs and proteomic analysis
of bothMSCs andextracellular vesicles releasedbyMSCs. Encour-
aging results were observed in two patients with ARDS who re-
ceived an intravascular infusion of MSCs on a compassionate
basis [21]. In these two cases, adoptive transfer of MSCs demon-
strated that the in vivo actions of MSCs agreed with most of the
MSC actions measured in vitro [21].

4 MSC Function in Preventing Cell Death
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Improvements in patients with ARDS who received adoptive
transfer of MSCs were associated with a rapid decrease in levels
ofmarkers of cell death [21]. Significantly, Leblanc and colleagues
analyzed bronchoalveolar lavage fluid (BALF) for monitoring mo-
lecular makers of apoptosis and necrosis of alveolar epithelial
cells. The analysis of cell death in BALF was based on detection
of epithelial apoptosis by measuring caspase-cleaved K18 and

other forms of cell death with features of necrosis, detected by
measuring uncleaved K18 [21]. The results revealed a rapid de-
crease in both apoptosis and necrosis of lung epithelial cells,
assessed within only few hours after the adoptive transfer of
MSCs in patients [21]. This finding might indicate a sequential
mechanism of the MSC action, the first effect being to home
to the site of tissue damage, to prevent RCD, before or con-
comitant with the assessable action of MSCs in modulating
inflammation.
Thus, RCD biomarkers could be measured to monitor and

rapidly predict the outcomes of a given MSC treatment in pa-
tients with ARDS. This analysis is crucial to readily evaluate the
response of the intervention in patients and could be used to
adapt and appropriately improve the treatment. Leblanc and
colleagues suggested that MSCs have therapeutic efficacy
for ARDS [21]. Furthermore, the authors demonstrated the
advantage of in vitro assessment of the MSC anti-inflammatory
potency while providing critical molecular insights into the
processes of cell death as pertinent in vivo biomarkers [21].
Thenceforth, such assessments appear critical in order to rapidly
monitor and evaluate the therapeutic effects of MSCs.

CONCLUSION

MSCs are remarkable from therapeutic perspectives, given the
easewithwhichwe can obtain a significant number of genetically
stable MSCs and the number of diseases that can be treated be-
cause of the intrinsic properties of MSCs [36]. Today, MSCs are
used in advanced-phase clinical trials of therapy to inhibit the
degenerative and inflammatory processes in various disorders
[6, 14, 36]. Thus, we increasingly need to standardize, optimize,
and ensure the success of MSC therapy in such advanced-phase
clinical trials [5, 6, 9, 13, 14, 20, 21, 48, 50, 52]. The challenges
and perspectives lie in implementing appropriate functional as-
says in vitro that could assess the therapeutic potential of MSCs
intended for clinical use. To this end, the efforts of the transla-
tional community have focused on providing release criteria for
MSCs based on their anti-inflammatory function, usually toward
T-cell activation and proliferation, in vitro [5, 6, 48]. In this review,
we suggest that in addition to developing easy-to-use and rapid
functional assays forMSCs, we should develop assays to evaluate
their ability to modulate RCD and in particular innate immune
cells such as macrophages and epithelial cells. However, func-
tional assays forMSCs inmodulating RCD of other cell types, such
as parenchymal cells or organ-specific cell subtypes, could be ap-
plied; pertinent target cells should be identified according to a
knownpathogenesis implyingRCD for a givendisease. In addition,
we suggestmonitoring RCDbiomarkers in patients, including spe-
cific markers for apoptosis, necroptosis, and pyroptosis, because
theseRCDhave a direct effect on the pathogenesis of a number of

Table 4. Evaluating RCD and ACD in vitro with specific RCD biomarkers

Biomarkers—test
in vitro (e.g.,
coculturesa)

RCD ACD

Apoptosis Necroptosis Pyroptosis Necrosis

Trypan blue 1 1 1 1

Lactate
dehydrogenase

2 1 1 1

Annexin V 1 1 1 1

Propidium iodide 2 1 1 1

PARP Cleavage 2 2 2

MLKL 2 Phosphorylation 2 2

Caspase-1 2 2 Cleavage 2

Gasdermin D 2 2 Cleavage 2

Data are based on the studies reported in [23–27, 33, 34].
aMSC cocultures with innate immune cells undergoing RCD.
Abbreviations: ACD, accidental cell death; MSC, mesenchymal stem
(stromal) cells; RCD, regulated cell death.

Table 5. Evaluating RCD and ACD in vivo with specific biomarkers

Biomarkers—test
in vivo (e.g., biologic

fluidsa)

RCD ACD

Apoptosis Necroptosis Pyroptosis Necrosis

Lactate
dehydrogenase

2 1 1 1

K18 2 1 1 1

ccK18 1 2 2 2

sTNFR 1 2 2 2

sTRAIL 1 2 2 2

HMGB1 2 1 1 1

IL-1b/IL-18 2 2 1 2

MLKL 2 Phosphorylation 2 2

mtDNA 2 1 1 2

Data are based on the studies reported in [21–25, 53–55].
aBiological fluids such as peripheral blood, bronchoalveolar lavage fluid,
and the cells contained in these fluids.
Abbreviations: ACD, accidental cell death; ccK18, caspase-cleaved K18;
HMGB1, high-mobility-group box 1; IL-1b, interleukin 1b; IL-18,
interleukin 18; K18, cytokeratin-18; MLKL, mixed lineage kinase-like;
mtDNA, mitochondrial DNA; PARP, poly(ADP-ribose) polymerase; RCD,
regulated cell death; sTNFR, soluble tumor necrosis factor receptor;
sTRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

Table 3. Evaluation of MSC potency based on two functional criteria: inflammation and RCD

Estimate of MSC potency

Burden Benefit

Inflammation RCD Immunomodulation and tissue repair

Innate/adaptive immune cells No effect (2) No effect (2) No effect (2)

Prevent (1) No effect (2) Not optimal effect (2/1)

No effect (2) Prevent (1) Not optimal effect (2/1)

Prevent (1) Prevent (1) Optimal effect (1)

Abbreviations: MSC, mesenchymal stem (stromal) cells; RCD, regulated cell death.
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diseases [22, 23, 28]. Of note, RCDmaynot be relevant in the path-
ogenesisof all diseases treatedwithMSCs, inwhichcaseother per-
tinent markers should be evaluated. Nonetheless, targeting
both inflammation pathways and RCD pathways as therapeutic
objectives might help improve MSC treatments intended for
degenerative and inflammatory diseases. The assessment of
the potency of MSCs in modulating both inflammation and
RCD in vitro and the monitoring of both inflammation and
RCD biomarkers in vivo [23, 25, 53–55] would certainly benefit
patients receiving MSC therapy, particularly those with ARDS
currently in advanced-phase clinical trials [20, 21, 39, 50, 51].
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